

Guideline-Recommended Diagnosis and Coding of Growth-Related Disorders in Children and Adults in the Managed Care Setting

Neil Minkoff, MD

Principal, FountainHead HealthCare Former Medical Director, Harvard Pilgrim Health Care

- Review the 2009 update of the AACE Medical Guidelines for Growth Hormone Use in GHD Adults and Transition Patients
- Review and differentiate the diagnostic criteria for SGA and ISS
- Identify available devices for rhGH administration and review their role in promoting adherence to GH therapy

Perspective

- rhGH is effective and safe for improving adult height and metabolism in patients with GHD as well as those with genetic syndromes associated with short stature¹
- Patients with ISS and children born SGA can achieve normalization of adult height with GH supplementation¹
- Diagnosis must take into account the underlying causes of GHD and short stature¹⁻³
- Treatment guidelines provide parameters for GH therapy²
- Desired clinical outcomes and patient expectations should be considered when making treatment decisions¹⁻³

^{1.} Hardin DS, et al. Clin Pediatr (Phila). 2007;46(4):279-286.

^{2.} Cook DM, et al. Endocr Pract. 2009;15(Suppl 2):1-29.

^{3.} Cohen P, et al. J Clin Endocrinol Metab. 2008:93(11):4210-4217.

AACE Medical Guidelines for Growth Hormone Use

AACE 2009: Background

- 2003 AACE guidelines identified the benefits of GH replacement in adults with GHD including¹
 - Increased bone density and lean tissue; decreased adipose tissue
 - Enhanced exercise capacity
 - Improved mood and motivation
 - Concerns over misuse of GH in non-medical conditions (ie, sports and aging) motivated a revision of the Guidelines in 2009²

^{1.} Gharib H, et al. Endocr Pract. 2003;9(1):64-76.

^{2.} Cook DM, et al. Endocr Pract. 2009;15(Suppl 2):1-29.

AACE 2009: Background (cont.)

- Considerable variability in the clinical practice of GH replacement for adults with GHD due to¹
 - Limited awareness of how to appropriately diagnosis adult GHD
 - Concerns about long-term risk
 - Need for daily injections
 - High cost of therapy

AACE 2009: Managing the Transition From Child-Onset to Adult GHD

- Patients with childhood-onset GHD previously treated with GH should be retested after final height achieved
 - Preferred GH stimulation test is the insulin tolerance test
 - Acceptable alternatives include the growth hormone releasing hormone + arginine test, the glucagon test, and (rarely), the arginine test alone
- No proven benefit to continuing GH treatment into adulthood except for GHD-related conditions (eg, Turner's syndrome, idiopathic short stature)

AACE 2009: Diagnosis of Adult GHD

Cook DM, et al. *Endocr Pract*. 2009;15(Suppl 2):1–29.

AACE 2009: Diagnosis of Adult GHD

Cook DM, et al. *Endocr Pract*. 2009;15(Suppl 2):1–29.

AACE 2009: Diagnosis of Adult GHD

AACE 2009: Diagnosis of Adult GHD Includes patients with irreversible hypothalamic-GHD may be transient in these **Adults with** pituitary structural lesions and patients; therefore, GH stimulation evidence of hypopituitarism possible GHD testing is recommended at least 12 months after the traumatic event Organic disease Organic disease History of head injury, cranial •0. 1. or 2 hormones deficient ≥3 hormones deficient irradiation, subarachnoid Low IGF-1 (<2.5 percentile) •Low IGF-1 (<50 percentile) hemorrhage or hypothalamic disease No further testing Stimulation test ITT or GHRH/ARG Treat Low suspicion **High suspicion** Normal IFG-1 Multiple pituitary hormone (≥0 SDS) deficiencies Observe Low IFG-1 (<0 SDS) GHRH/ARG ITT Peak GH ≤5.0 µg/L (see legend) **Treat** ITT remains the **GHRH/ARG ARG** Glucagon ITT gold-standard test Peak GH ≤5.0 µg/L Peak GH ≤3.0 µg/L Peak GH ≤0.4 µg/L (see legend) for diagnosing Treat Proceed to ITT. Treat Treat glucagon, or ARG if adult GHD normal response and suspicion is still high Legend Treat if peak GH ≤11.0 µg/L in patients with BMI <25 kg/m², IGF-1=insulin-like growth factor 1 peak GH ≤8.0 µg/L in patients with BMI ≥25 and <30 kg/m², ITT=insulin tolerance test or peak GH ≤4.0 µg/L in patients with BMI ≥30 kg/m² **GHRH=GH** releasing hormone

ARG=arginine

GH Dosing Is Generally Based on Normal Physiologic Patterns of GH Secretion

- Recombinant GH approved by the FDA in 1996 for use as replacement therapy in GHD¹
- A lack of consensus persists regarding the optimal approach to dosing GH¹

Timeline of GH Secretion²

- 1. Cook DM, et al. *Endocr Pract*. 2009;15(Suppl 2):1–29.
- 2. Brabant G, et al. Horm Res. 2003;60(2):53-60.

AACE 2009: General GH Dosing Guidance for Adults With GHD

- Dosing should be individualized independent of body weight
 - Goal is to normalize serum IGF-1 levels without causing AEs
 - Aim for serum IGF-1 levels in the middle of the normal range appropriate for age and sex, unless side effects are significant
 - A higher dose can be considered to determine whether it provides further benefit*
- For patients with adherence issues, administer on alternate days or 3x/week (using the same total weekly dosage)

^{*}As long as the serum IGF-1 levels remain within the normal range and the patient does not experience side effects.

AACE 2009: GH Replacement Recommendations in Adults With GHD

Starting dose

- <30 years: 0.4–0.5 mg/d (or higher when transitioning from pediatric treatment)</p>
- 30–60 years: 0.2–0.3 mg/d
- >60 years: 0.1–0.2 mg/d
- Lower doses (0.1–0.2 mg/d) if diabetes/glucose intolerance present

Dose titration

- Increase 0.1–0.2 mg/d at 1- to 2-month intervals, depending on clinical response, serum IGF-1 levels, side effects, and comorbidities (eg, diabetes, etc.)
- Longer intervals and smaller dose increments may be necessary in older patients

AACE 2009: GH Replacement Recommendations in Adults With GHD (cont.)

Monitoring

- Assess clinical response, side effects, serum IGF-1, and fasting glucose levels at 6-month intervals
- Measure quality of life (QoL) and lipids every 6–12 months
- Evaluate bone density every 2–3 years

Duration of therapy

- Appropriate length of therapy is unclear; continue treatment if benefits are achieved
- If objective benefits not achieved after 2 years, consider discontinuation

AACE 2009: Safety of GH Replacement in Adults With GHD

- Contraindications include history or presence of malignancy
- Patient with diabetes may require low dose GH and/or an adjustment of diabetes medications
 - Patients should optimize glucose control before GH treatment
- Only limited data available regarding cardiovascular morbidity in GHD
 - Observation that rate of MI is lower in patients on GH replacement therapy implies that GH replacement therapy may reduce CV risk

AACE 2009: Statements on Unapproved Use of GH in Adults

- Use of GH for nonmedical conditions is strongly discouraged
- Rationale for use outside of approved indications
 - Anabolic actions of GH lead to its abuse in sports
 - Supplement age-related decrease in GH secretion
- Approximately 30% of GH Rx in the US are for antiaging and athletic enhancement

AACE 2009: Summary of Treatment Recommendations of Adult GHD

- GHD is a well-recognized clinical syndrome in adults
- GHD is associated with significant comorbidities if untreated
- Only patients with documented hypothalamic-pituitary disease and/or biochemically-proven GHD should be prescribed GH
- Low GH doses are recommended at initiation with gradual upward, stepwise titration
- Clinical response and adverse events should be routinely monitored
- Prescribing GH to patients for any reason other than the welldefined approved uses of the drug is not recommended

Idiopathic Short Stature and Small for Gestational Age

Idiopathic Short Stature: Definition

Definition

- Height that is more than -2 SD score (SDS) below the corresponding mean height for a given age, sex, and population group without evidence of systemic, endocrine, nutritional, or chromosomal abnormalities
- Children with ISS have normal birth weight and are not GH deficient
 - However, GHD must be excluded to make a diagnosis of ISS

Criteria for Deciding to Refer to Endocrinology for Evaluation of Short Stature

- In the presence of short stature
 - Very Short: height less than 2 SD below the mean
 - Short for Family: height more than 1.5 SD below the midparental height
 - Short and Growing Slowly: height <1.7 SD below the mean <u>AND</u> one-year height velocity <-1 SD, or a decrease in height SD >0.5 over one year
- In the absence of short stature
 - Severe Growth Deceleration: height velocity <-2 SD over one year or
 <-1.5 SD over two years or decrease in height SD >1 over two years
 - Intracranial Lesion: signs indicative of a brain lesion
 - Pituitary Dysfunction: signs of MPHD
 - Congenital GHD: neonatal symptoms and signs of GHD

MPHD=multiple pituitary hormone deficiency

Screening and Diagnostic Testing for ISS

Medical History and Physical Evaluation	Laboratory Evaluation	
Medical and family history	Complete blood count	
Physical examination including Phenotypic characteristicsBody proportionsPubertal staging	TSH	
	Free T ₄	
	IGF-1	
Birth history	Celiac disease screening	
Abnormalities of fetal growthPerinatal complications	Bone X-ray/skeletal survey	
 Maternal history during pregnancy Past illnesses and/or chronic diseases Medication use Nutritional status 	KaryotypeBoys with genital abnormalitiesGirls with unexplained short stature	

Small for Gestational Age: Definition

Definition

- SGA refers to the size of the infant at birth
- Birth weight <2500 g at a gestational age of more than 37 weeks or a birth weight or length below the third percentile for gestational age
- Includes neonates with either low birth weight, low birth length, or both low weight and length for gestational age
- Children with SGA usually do not have GH or IGF-1 deficiencies

Diagnosis is facilitated by

- Accurate birth weight and length measurements
- Ultrasonographic gestational dating performed during pregnancy

Small for Gestational Age: Prognosis

Prognosis

- Most children born SGA achieve catch-up growth during the first 6–12 months of life
- If they have not caught up by 2 years, they are unlikely to do so in the future

ICD-9 Codes Associated With a Diagnosis of Pediatric Growth Hormone Deficiency

ICD-9 Code	Primary Diagnosis		
253.2	Panhypopituitarism		
253.3	Growth hormone deficiency		
585	Chronic renal insufficiency		
759.81	Prader-Willi Syndrome		
759.89	Noonan's Syndrome		
758.6	Turner's Syndrome		
764.00	Small for Gestational Age		
783.43	Idiopathic Short Stature		

GH Therapy Is Cost-effective in Children With GHD

Treatment of GHD (somatropin 0.030 mg/kg/day vs no treatment) was assessed using decision analytic modeling in two hypothetical cohorts of children:

1) 5 to 16 years, 2) 3 to 18 years.

NHY=normal height years QALY=quality-adjusted life-years

ISS and SGA: Summary

- Children with ISS and SGA usually do not have GH or IGF-1 deficiencies, but GHD must be excluded to make the diagnosis
- Diagnosis of both ISS and SGA can be challenging due to the absence of clear laboratory indicators

Currently Available rhGH and Administration Devices

Approved Indications for Currently Available rhGH

	Manufacturer	FDA-Approved Indications				
Drug		GHD (Pediatric/Adult)	Turner syndrome	CRI	ISS	Other
Genotropin ^{®1}	Pfizer	X	X			PWS, SGA
Humatrope®2	Eli Lilly	X	X		X	SHOX
Norditropin ^{®3}	Novo Nordisk	X	X		Χ	Noonan Syndrome, SGA
Nutropin ^{®4}	Genentech	X	X	X	X	
Nutropin AQ®5	Genentech	X	X	X	Χ	
Omnitrope ^{®6}	Sandoz	X				
Saizen®7	EMD Serono	X				
Serostim ^{®8}	EMD Serono					HIV wasting or cachexia
Tev-Tropin ^{®9}	Gate/Teva	X (pediatric only)				
Zorbtive®10	EMD Serono					SBS

GHD=growth hormone deficiency CRI=chronic renal insufficiency ISS=idiopathic short stature PWS=Prader-Willi syndrome SGA=small for gestational age SHOX=short stature homeobox genen

HIV=human immunodeficiency virus SBS=short bowel syndrome

Drug Facts and Comparisons. 2009.

Examples of Currently Available rhGH Administration Devices

Growth Hormone	Device
Genotropin [®] (somatropin; rDNA origin)	Pen® 5 and Pen® 12, MiniQuick® premixed
Humatrope [®] (somatropin; rDNA origin)	HumatroPen [®] with cartridges, vial
Norditropin [®] (somatropin; rDNA origin)	NordiFlex [®] , FlexPro [®] , and NordiPen [®] with cartridges
Nutropin and AQ [®] (somatropin; rDNA origin)	Nutropin AQ Pen [®] with cartridges, AQ NuSpin [™] , vial
Omnitrope [®] (somatropin; rDNA origin)	Pen 5 and Pen 10, vial
Saizen [®] (somatropin; rDNA origin)	cool.click™ needle-free injector system, one.click® auto- injector pen, and easypod® needle injector system
Tev-Tropin [®] (somatropin; rDNA origin)	Tev-Tropin vial and needle-free T-Jet®
Valtropin [®] (somatropin; rDNA origin)	Valtropin syringe and needle

Preferred Features of an rhGH Administration Device

- Patient preferences for rhGH injection include
 - Reliability
 - Ease of use
 - Lack of pain during injection
 - Safety on use and in storage
 - Number of steps in preparation before, during, and after use

Variables Impacting Long-term Adherence to GH Therapy

	Frequency of Missed Injections					
Variable	0 per Week	Up to 1 per Week	>1–2 per Week	>2 per Week		
Age of patient	12.3	11.9	11.9	14.2		
Duration of GH therapy (yrs)	1.6	1.8	2.8	4.4*		
Patient allowed to use their preferred administration device (%)	81	68	58	23*		
Short duration of GH Rx (<4 wks/Rx)	10	6	27	50*		

n=75
Mean age=12.3 years
Cross sectional data
Mean duration of GH treatment=1.9 years
GH dose=0.8 mg/kg/day

GH devices included automatic injection devices (n=38), manual injection pen devices (n=33), and needle-free injection devices (n=4).

^{*}P<0.005

Greater Number of Missed Injections Associated With Lower Growth Rate

n=75
Mean age=12.3 years
Cross sectional data
Mean duration of GH treatment=1.9 years
GH dose=0.8 mg/kg/day.

36% (27/75) missed 0 injections/week; 25% (19/75) missed ≤1/week; 16% (12/75) missed >1–2/week; 23% (17/75) missed >2 injections/week.

Kapoor RR, et al. Arch Dis Child. 2008;93:147-148.

^{*}Adjusted for age and duration of GH

[†]*P*<0.05therapy

Ease of Use Can Impact Therapeutic Adherence

- rhGH often must be either parent-administered (in the case of small children) or self-administered, often for several years¹
- Adherence to therapy can be negatively affected by the time required to prepare and administer the drug^{1,2}
- Easier-to-use administration devices require less training^{1,2}

^{1.} Wickramasuriya BP, et al. *Horm Res.* 2006;65(1):18–22.

^{2.} Dumas H, et al. BMC Endocr Disord. 2006;6:5.

Comparison of Time Required to Learn How to Use Common Administration Devices

N=6 nurses; each nurse completed 5 simulations for the 4 pen devices resulting in a total number of 30 observations each device across 2 dosing simulations (ie, n=60 observations per pen device).

^{*}P<0.05 vs NNF Nickman NA, et al. *BMC Nurs*. 2010;9:6.

Comparison of Time Required to Prepare Common Devices to Deliver a Single Dose

N=6 nurses; each nurse completed 5 simulations for the 4 pen devices resulting in a total number of 30 observations each device across 2 dosing simulations (ie, n=60 observations per pen device).

^{*}P<0.05 vs NNF Nickman NA, et al. *BMC Nurs*. 2010;9:6.

rhGH Administration: Summary

- Several devices are available to administer rhGH
 - Patients given a choice of device have greater adherence
- Ease of use, reliability, safety, and amount of preparation required all influence patient satisfaction with the administration device
- Patient satisfaction can influence adherence to GH therapy
- Higher adherence is associated with greater height velocity